Melatonin in Mitochondria: Mitigating Clear and Present Dangers.
In cancer cells, glucose is primarily metabolized to pyruvate and then to lactate in the cytosol.
In cancer cells, glucose is primarily metabolized to pyruvate and then to lactate in the cytosol.
There is highly credible evidence that melatonin mitigates cancer at the initiation, progression and metastasis phases. In many cases, the molecular mechanisms underpinning these inhibitory actions have been proposed. What is rather perplexing, however, is the large number of processes by which melatonin reportedly restrains cancer development and growth.
Melatonin is uncommonly effective in reducing oxidative stress under a remarkably large number of circumstances. It achieves this action via a variety of means: direct detoxification of reactive oxygen and reactive nitrogen species and indirectly by stimulating antioxidant enzymes while suppressing the activity of pro-oxidant enzymes.
Melatonin (N-acetyl-5-methoxytryptamine) has revealed itself as an ubiquitously distributed and functionally diverse molecule. The mechanisms that control its synthesis within the pineal gland have been well characterized and the retinal and biological clock processes that modulate the circadian production of melatonin in the pineal gland are rapidly being unravelled.
This review aims at describing the beneficial properties of melatonin related to its antioxidant effects. Oxidative stress, i.e., an imbalance between the production of reactive oxygen species and antioxidant defences, is involved in several pathological conditions such as cardiovascular or neurological disease, and in aging. Therefore, research for antioxidants has developed. However, classical antioxidants often failed to exhibit beneficial effects, especially in metabolic diseases.
It is assumed somatic cells can die in the apoptotic, the autophagic, or the necrotic way; however, the mechanisms of sperm death are not clear.
The experimental data obtained from both human and rodent studies suggest that melatonin may have utility in the treatment of several cardiovascular conditions. In particular, melatonin's use in reducing the severity of essential hypertension should be more widely considered. In rodent studies melatonin has been shown to be highly effective in limiting abnormal cardiac physiology and the loss of critical heart tissue resulting from ischemia/reperfusion injury.
Melatonin is a highly conserved molecule. Its presence can be traced back to ancient photosynthetic prokaryotes. A primitive and primary function of melatonin is that it acts as a receptor-independent free radical scavenger and a broad-spectrum antioxidant.
In numerous experimental systems, the neurohormone melatonin has been shown to protect against oxidative stress, an effect which appears to be the result of a combination of different actions. In this study, we have investigated the possible contribution to radical scavenging by substituted kynuramines formed from melatonin via pyrrole ring cleavage.